
KTrax JSON/REST and UDP interface

Gerhard Wesp
https://ktrax.kisstech.ch/

Zürich, June 2021

Contents

1 Revisions 2

2 Introduction 2

3 Public KTrax server 2
3.1 Usage conditions for the public KTrax server 2

4 The KTrax native tracking protocol (UDP) 3
4.1 Periodic packets . 3

4.1.1 The ktrax pos packet (client to server) 3
4.1.2 The ktrax hello packet (client to server) 5
4.1.3 The ktrax info/ktrax info2 packet (client to server) 5
4.1.4 The ktrax data packet (client to server) 6
4.1.5 The ktrax update packet (server to client) 6

4.2 Special purpose packets (messages) 8
4.2.1 Bye message . 8
4.2.2 URL message . 8

4.3 Examples . 8
4.3.1 Gliding . 8

5 Network type codes 9
5.1 Mobile networks . 9
5.2 Special purpose networks . 9

6 Vehicle types 9
6.1 Aviation . 9

7 KTrax JSON service: Tracking 10

8 KTrax JSON service: Sortie logbook 13

9 Troubleshooting 14

1

https://ktrax.kisstech.ch/

KTrax JSON/REST and UDP interface KTrax

1 Revisions

Date Version Author Description
June 10, 2015 1.00 gw Initial release
June 12, 2015 1.03 gw Added disclose id, name3, flags

Clarifications and units
Updated JSON interface

June 22, 2015 1.04 gw Document formatting
July 3, 2015 1.05 gw Added JSON fields: Turn rate, stealth
July 15, 2015 1.06 gw Added URL parameters max_results, undisclosed, static
September 14, 2015 1.07 gw map_orientation clarifications
October 27, 2015 1.08 gw JSON altitude: MSL, ktrax_info
November 4, 2015 1.10 gw Added JSON/sortie interface
December 3, 2015 1.22 gw Added SOS notification, JSON filter parameter
January 25, 2016 1.24 gw Added turn_rate

February 29, 2016 1.26 gw Added name4

May 22, 2016 1.30.4 gw Added max_age; Clarifications;
examples; troubleshooting

July 16, 2018 2.2.5 gw Logbook additions and corrections
September 18, 2018 2.2.6 gw Deprecate relative dates for logbook
January 28, 2019 2.2.6 gw Correct outdated links, focus on aviation
April 3, 2019 2.3.0 gw API keys
June 1, 2019 2.6.0 gw New backend URLs
August, 2019 2.7.0 gw SAR update
June, 2020 2.99.101 gw Aircraft types; callsign in tracking query;

dbeg/dend update
June, 2021 3.1.2 gw Document vertical speed fields in REST API

2 Introduction

KTrax is a high performance realtime tracking solution developed by Gerhard Wesp
and Nejc Medved. Applications range from Air Traffic Control over ride sharing
apps to asset tracking or law enforcment. KTrax is available for client installation
or as Sofware as a Service (SaaS). For more information, please visit https://

ktrax.kisstech.ch/.
This document describes:

• The KTrax native tracking UDP protocol

• The KTrax JSON service

3 Public KTrax server

URLs for tracking and the Logbook are:

https://ktrax.kisstech.ch/backend/tracking?<parameters>

https://ktrax.kisstech.ch/backend/logbook?<parameters>

3.1 Usage conditions for the public KTrax server

• Please request an API key. Contact details can be found on the KTrax site.

2

https://ktrax.kisstech.ch/
https://ktrax.kisstech.ch/
https://ktrax.kisstech.ch/

KTrax JSON/REST and UDP interface KTrax

• Do not scrape data and keep query load to the necessary minimum.

• Data is available for private and personal use only. For other use cases, please
contact us for licensing arrangements.

• Unless agreed otherwise, licensing conditions may change and fees may be
introduced or changed at any time.

Licensing of the KTrax software is available. Please contact us for details.

4 The KTrax native tracking protocol (UDP)

Note: See https://github.com/gewesp/ktrax-mobile for an open-source An-
droid application which implements the native KTrax UDP protocol.

The native tracking protocol allows mobile clients to track their position on
KTrax. It has the following characteristics:

• UDP based

• Packet structure: Blank-separated ASCII

• Millisecond values must be integers (no decimal point allowed), other values
may have decimal places.

• Client sends ktrax pos to server, server replies by ktrax update and occasional
special purpose packets

• Client → server: ktrax pos, ktrax hello, ktrax bye

• Server → client: ktrax update, ktrax url, ktrax bye

• Loss of isolated packets is tolerated

Note: Binary packet encoding will be added in the future.
A single UDP source (IP address/port combination) can transmit data for at

most 5 targets.

4.1 Periodic packets

4.1.1 The ktrax pos packet (client to server)

Usage: Aviation

Periodicity:

• 0.1 to 1 packets/s for aviation tracking (indicative value)

3

https://ktrax.kisstech.ch/
https://github.com/gewesp/ktrax-mobile

KTrax JSON/REST and UDP interface KTrax

Summary:

ktrax_pos <id> <seqnr> <systime>

<n_received> <loss_pct> <rtt_lat> <tdraw>

<nettype> <cellid> <roam> <batt> <maghdg>

<fix_systime> <vehicle_type_and_flags>

<gpstime> <lat> <lon> <alt>

<speed> <course> <vertical_speed> <accuracy>

<test_systime>

[<turn_rate>]

Optional parameters are listed in [brackets].

id: Client ID, e.g. andr:a5f3e8d04d2f9f28

seqnr: Sequence number of this ktrax pos packet, should start with 0 and increase
by 1 for each packet

systime: System time when packet was sent [ms], any fixed system time reference
is OK

n received: Number of ktrax update packets received

Informational values, not necessary for operation:

loss pct: Packet loss [%], uses n received

rtt lat: Round trip latency as determined by client [ms]

tdraw: Radar drawing time [ms]

nettype: Current network type [integer], see below for values

cellid: Current network ID if cellular network [integer]

roam: 1 when roaming, 0 otherwise

batt: Battery level [%]

maghdg: Magnetic heading [degrees], 1800 if not available

Mandatory values:

fix systime: System time when fix was obtained [ms]; same time reference as
systime

vehicle type and flags: Target type [integer], see section 6.

The following flags can be OR’ed with the value: 0x100: Allow target to
appear on tracking site 0x200: Emergency/SOS

gpstime: GPS time [ms] since 1970 epoch, UTC, -1 for invalid fix

lat, lon: GPS latitude/longitude [degree]

alt: GPS altitude over the WGS84 ellipsoid [m]

speed: Horizontal speed [m/s]

4

https://ktrax.kisstech.ch/

KTrax JSON/REST and UDP interface KTrax

course: Course over ground [degree]

vertical speed: Vertical speed [m/s], up = positive

accuracy: GPS accuracy estimate [m]

System test:

test systime: Last time TEST button was pressed ([ms], same reference as systime)

Optional parameters:

turn rate: Turn rate [degree/s], positive: turning right

Notes:

• Longitude in [-180, 180], latitude in [-90, 90].

• Not all parameters are mandatory. Not applicable values should be set to -1
unless noted otherwise.

4.1.2 The ktrax hello packet (client to server)

Usage: Aviation

Periodicity:

• 1 packet/30 minutes, starting at beginning of session

• A new hello packet each time the client configuration changes (e.g., network-
ing status)

• It is recommended to repeat the packet a few times.

Summary:

ktrax_hello <id> <systime>

<clientversion>

<devicemodel> <systemversion>

<network_operator> <network_country_iso>

The fields id and systime are as for ktrax pos.

clientversion: Client software version [string]

devicemodel: Client device model [string]

systemversion: Client device Operating System version [string]

network operator: Network operator name (if available)

network country iso: Network country ISO code (if available)

4.1.3 The ktrax info/ktrax info2 packet (client to server)

Usage: Aviation

5

https://ktrax.kisstech.ch/

KTrax JSON/REST and UDP interface KTrax

Periodicity:

• Sent in conjunction with ktrax hello.

Summary:

ktrax_info <id> <systime>

<name1> <name2> <name3> ...

ktrax_info2 <id> <systime>

<name1> <name2> <name3> <name4> ...

The fields id, and systime are as for ktrax pos.

name1: Callsign [string]

name2: Short (alternative) callsign [string]

name3: Reserved

name4: Only ktrax info2: Symbol color (e.g. ’#a1efd2’)

name1 and name2 must contain only upper-case letters, numbers, hyphen or
underscore.

Additional fields may be added in the future.

4.1.4 The ktrax data packet (client to server)

Summary:

ktrax_data <id> <seqnr> <systime> <channel> <keep>

{ JSON data }

• Transmits arbitrary user-defined data (“user data”) to the server.

• Data are sent in JSON objects.

• Data are in named channels and each channel will keep keep back items in
a circular buffer.

The fields id, seqnr and systime are as for ktrax pos. The same sequence
number counter should be used for ktrax pos and ktrax data.

channel: ...

keep: ...

4.1.5 The ktrax update packet (server to client)

Usage: Aviation

6

https://ktrax.kisstech.ch/

KTrax JSON/REST and UDP interface KTrax

Summary:

ktrax_update <sent_systime> <n_clients> <map_orientation> <self_moving>

<notification> <n_targets>

[A0 <gpstime> <target_id> <vehicle_type>

<distance> <bearing> <relative_altitude>

<speed> <display_course_degree> <vertical_speed> <heading>

<tCPA> <dCPA> <danger> <notification>]

[A1 ...] ... [A4 ...]

sent systime: systime of ktrax pos packet this packet replies to

n clients: Current total number of clients

map orientation: ’UP’ direction on map [degrees]. Can be heading, track or just
North.

self moving: This client moving? 1 : 0

notification: Audio alarm level 0 ... 3, 4 for SOS/emergency, error notification
101, ...

n targets: 0–5, Number of following targets A0 ... A4

A0 ... A4: Markers for target data block For each target, the marker is followed
by the following block:

gpstime: GPS time of last fix from this target

target id: Target ID, e.g. andr:a5f3e8d04d2f9f28

vehicle type: Target type, e.g. 101 for boat, 151 for buoy etc.

distance: Distance own ship → target [m]

bearing: True bearing from own ship → target [degrees]

relative altitude: Target minus own ship altitude [m]

speed: Target speed [m/s]

display course degree: Target course over ground, 1800 if not moving

vertical speed: Target vertical speed [m/s], positive = climbing

heading: Target heading [degree] (future extension)

tCPA: Time to closest approach [s]

dCPA: Distance at closest approach [m]

danger: Danger level (currently unused)

notification: Notification for this target, for radar symbol colors

The ktrax update packet is:

• Sent only as reply to ktrax pos packets to the source IP address/port.

• Contains server information, map orientation, audio notification and up to 5
targets

7

https://ktrax.kisstech.ch/

KTrax JSON/REST and UDP interface KTrax

4.2 Special purpose packets (messages)

Usage: Aviation
Messages are used for one-time actions like opening URLs or termination of the

client.

• Message packets are sent only as reply to ktrax pos (in addition to ktrax update)

• Message packets are repeated at least 5 times after issuance by the server

• Each message has a code serving as a unique integer identifying the message.
Clients ignore subsequent packets with the same code.

4.2.1 Bye message

Server to client

ktrax_bye <code> <reason>

• Terminates client

• Can be used e.g. to auto-shut down client on inactivity or leaving the lake.

• reason Short string shown to the user.

Client to server

ktrax_bye <id> <systime>

The client indicates to the server that it’s terminating and will no longer send
packets. See ktrax pos for ID and systime.

4.2.2 URL message

Summary:

ktrax_url <code> <reason>

• Opens a browser on the given URL.

• Used to inform users about updates, system status etc.

• Use sparingly!

4.3 Examples

4.3.1 Gliding

A glider G-CJLO agreeing to be tracked (type 1 OR’ed with 256, thus 257), with a
purple symbol (color ff00ff) might send the following position and info packets:

8

https://ktrax.kisstech.ch/

KTrax JSON/REST and UDP interface KTrax

ktrax_pos demo:client1 0 0 0 0 0 0 -1 -1 0 100 90 0 257

1418635398000 47 8 0 100 90 0 5 -1000000000

ktrax_info2 demo:client1 0 G-CJLO LO - #ff00ff

ktrax_pos demo:client1 1 1000 0 0 0 0 -1 -1 0 100 90 1000 257

1418635399000 47 8.001317181 0 100 90 0 5 -1000000000

ktrax_info2 demo:client1 1000 G-CJLO LO - #ff00ff

ktrax_pos demo:client1 2 2000 0 0 0 0 -1 -1 0 100 90 2000 257

1418635400000 47 8.00263436201 0 100 90 0 5 -1000000000

Notice that the ktrax info2 packet is repeated to ensure reliable delivery.

5 Network type codes

5.1 Mobile networks

For an up-to-date list, see https://developer.android.com/reference/android/
telephony/TelephonyManager.html

• 0: Unknown/WiFi

• 1: GPRS

• 2: EDGE

• 3: UMTS

• 8: HSDPA

• 10: HSPA

• 13: LTE

• 15: HSPAP

5.2 Special purpose networks

• 201: Open Glider Network

• 202: Airware

6 Vehicle types

6.1 Aviation

See the FLARM Data Port specification.

• 1/GLD: Glider

• 2/TOW: Tow plane

• 3/HELI: Helicopter

• 4: (Not assigned)

9

https://ktrax.kisstech.ch/
https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developer.android.com/reference/android/telephony/TelephonyManager.html

KTrax JSON/REST and UDP interface KTrax

• 5/DROP: Drop plane

• 6/HGLD: Hang glider (delta)

• 7/PGLD: Paraglider

• 8/PWR: Power plane

• 9/JET: Jet

• 10/UFO: Unidentified Flying Object

• 11/BALLOON: Balloon

• 12/BLIMP: Airship

• 13/UAV: Unmanned Aerial Vehicle

• 14: (not assigned)

• 15/STATIC: Static; e.g. captive balloon

7 KTrax JSON service: Tracking

Summary: The JSON interface allows web clients to get all targets with active
tracking flag in a specific rectangle.

Note: Please request an API key to use the server.

URL:

https://ktrax.kisstech.ch/backend/tracking?<parameters>

Example query: https://ktrax.kisstech.ch/backend/tracking?sw_lat=

41.12&sw_lon=4&ne_lat=45&ne_lon=10.1&max_results=1000&max_age=2000&

ktrax_id=icao%3a4B1307

URL parameters:

• Bounding box: sw_lat=<lat>&ne_lat=<lat>&sw_lon=<lon>&ne_lon=<lon>

• Return specific IDs (in addition to all in bounding box; may cause duplicates):
ktrax id=id1,id2,. . .

• Return specific callsigns (in addition to all in bounding box; may cause dupli-
cates): callsign=cs1,cs2,. . .

• Maximum number of results for bounding box query: max_results=<n> (De-
fault: 300; explicit IDs or callsigns don’t count towards it, number is only
approximate)

• Maximum age (time since last update) of targets in seconds: max_age=<t>

(Default: Infinity, i.e. return all targets regardless of age)

• Include targets with undisclosed ID: undisclosed=<0|1> (Default: 1)

10

https://ktrax.kisstech.ch/
https://ktrax.kisstech.ch/backend/tracking?sw_lat=41.12&sw_lon=4&ne_lat=45&ne_lon=10.1&max_results=1000&max_age=2000&ktrax_id=icao%3a4B1307
https://ktrax.kisstech.ch/backend/tracking?sw_lat=41.12&sw_lon=4&ne_lat=45&ne_lon=10.1&max_results=1000&max_age=2000&ktrax_id=icao%3a4B1307
https://ktrax.kisstech.ch/backend/tracking?sw_lat=41.12&sw_lon=4&ne_lat=45&ne_lon=10.1&max_results=1000&max_age=2000&ktrax_id=icao%3a4B1307

KTrax JSON/REST and UDP interface KTrax

• filter=static:

• filter=moving: Filters static or moving targets. “Static” in this context
means targets that are fixed to the earth, e.g. buoys, navigation aids, static
FLARM devices etc. That is, parked aircraft are classified as moving, not
static.

• filter=sos: Filters targets with an active SOS message (currently supported
on the Android app only).

• filter=sar: Filters targets with an active SOS message or which are flying
or have landed off field.

• sar_filter_vs=<vs>: Filter targets whose vertical speed [m/s] is less than
or equal to <vs>.

• sar_filter_age=<age>: Filter targets whose age [s] is greater than or equal
to <age>.

• aircraft_type=<type1>|<type2>...: Filter targets of given type. Please
use textual types as per section 6. Types can be or-ed together, e.g.

...&aircraft_type=PWR|TOW&...

• DEPRECATED (use filter instead): Include static targets: static=<0|1>
(Default: 1)

Note: Use URI escaping, e.g. ogn:DD8EE2 becomes ogn%3aDD8EE2

Example reply:

{

"server_stats": { "n_mobile": 2, "n_tracking": 2,

"n_disclose_id": 2, "n_stealth" : 0,

"n_static": 1 },

"targets": [

["demo:client1", 101, "2014-12-15T09:23:18Z", 1, 47, 8, 0, 0, 5,

1.4, 0, 0, 0, 0, 1, 0, "no_relay", ["", "", "", ""], 100, 0, 0],

["demo:client2", 101, "2014-12-15T09:23:18Z", 1, 47, 8, 0, 0, 5,

1.3, 90, 0, 0, 0, 1, 0, "no_relay", ["", "", "", ""], 100, 0, 0],

["190_THEMSE_4", 182, "2014-12-15T09:23:18Z", 0,

51.46235, -0.31757355, 0, 0, 5,

0, 1800, 0, 0, 0, 1, 0, "no_relay", ["", "", "", ""], 100, 0, 0]

]

}

Subfields of server stats

n mobile: Total number of mobile clients

n tracking: Number of mobile clients that can be disclosed over the JSON interface

n disclose id: Number of mobile clients that disclose their ID

11

https://ktrax.kisstech.ch/

KTrax JSON/REST and UDP interface KTrax

n fixed: Number of fixed (static) clients. These always disclose their ID.

n sos: Number of clients currently in distress (SOS)

Note: Server statistics are only updated every 10 seconds.

Subfields of targets

[

[

id, type, gps_time, age, lat, lon, alt, RESERVED1, accuracy,

speed, course, vertical_speed, turnrate, notification, disclose_id, stealth,

relay,

[name1, name2, name3, name4, ...]

battery_level, packet_loss, sos,

RESERVED ...

]

// , ...

]

Note: A maximum of 300 targets are returned in the standard version of KTrax.
Each row of the array represents a target as follows:

id: Unique identifier [string], should be qualified by “ogn:”, “icao:” etc. Max. 21
characters.

type: Vehicle type [integer]

gps time: Date/time of last known position [ASCII string].

age: Approximate time since last packet was received [s].

lat, lon: Geographic latitude/longitude [degrees]

alt: Altitude above MSL (Note: Not WGS84) [m]

accuracy: Horizontal position uncertainty [m]

speed: Horizontal speed [m/s]

course: Course over ground [degrees]

vertical speed: Vertical speed [m/s, positive UP]

turnrate: Turn rate [degrees/s, positive RIGHT]

notification: Alarm level 0...3, 4 means emergency (SOS)

disclose id: Whether or not this target allows the id to be disclosed [0/1]

stealth: Stealth mode, applicable to some airborne systems [0/1]

relay: Identifier of station that last received this target [string]

name1, name2, name3, name4: Additional information (vessel name/callsign, flight
id, tail number, symbol color etc.) [string]

battery level: Battery level (if available) [percent]

packet loss: Packet loss (if available and applicable) [percent]

sos: Distress (SOS) status [0/1]

12

https://ktrax.kisstech.ch/

KTrax JSON/REST and UDP interface KTrax

8 KTrax JSON service: Sortie logbook

Summary: The Sortie logbook JSON interface provides information about takeoff
and landing times, location, and launch method of tracked aircraft.

URL:

https://ktrax.kisstech.ch/backend/logbook?<parameters>

Example query (replace the date range!): https://ktrax.kisstech.ch/

backend/logbook?query_type=ap&id=LFMF&tz=1&dbeg=2019-01-20&dend=2019-01-30

This query returns all flights from airport LFMF in timezone UTC+1 during 10
days in January 2019.

URL parameters:

• Index selection. Optional to disambiguate between airport ID or aircraft call-
sign. Query for airport: query_type=ap; query for a callsign: query_type=cs

• Specify the search query, either airport ID/name or callsign according to the
index selection: query=<airport_or_callsign>

• Time range selection; return flights from begin_date to end_date days back
(inclusive). The date is expressed in YYYY-MM-DD and the selected time zone:
dbeg=<begin_date>&dend=<end_date> Examples:

– dbeg=2015-27-09 Select date (in local time zone)

– dbeg=days_back:10 Start at midnight 10 days back from now

– dbeg=utc:539958896 Start at the specific time; UTC in seconds since
January 1, 1970. In this case, the time zone (tz) is ignored.

• Select time zone for reported times in UTC+x hours: tz=<x>

Fractional values (needed for some Australian time zones) are possible, e.g.
tz=10.5

Airport names may contain UTF-8 characters which must be percent-escaped.

Example reply:

{

"begin_date": "2015-10-31",

"query_type": "ap",

"n_entries": 2,

"sorties":

[

{"seq": 144430352901, "id": "flarm:DD1234", "cs": "VH-NXY",

"launch": "T", "tow_id": "flarm:DF1234", "tow_cs": "VH-BAB", "tow_seq": 144430550902,

"type": 1, "date": "2015-11-01",

"tkof": {"time": "09:28", "loc": "YBSS", "rwy": "2"},

"ldg": {"time": "11:00", "loc": "YBSS", "rwy": "2"},

"dalt": "540", "dt": "1:32"},

13

https://ktrax.kisstech.ch/
https://ktrax.kisstech.ch/backend/logbook?query_type=ap&id=LFMF&tz=1&dbeg=2019-01-20&dend=2019-01-30
https://ktrax.kisstech.ch/backend/logbook?query_type=ap&id=LFMF&tz=1&dbeg=2019-01-20&dend=2019-01-30

KTrax JSON/REST and UDP interface KTrax

{"seq": 144430550902, "id": "flarm:DF1234", "cs": "VH-BAB",

"launch": "S", "tow_id": "flarm:DD1234", "tow_cs": "VH-NXY", "tow_seq": 144430550901,

"type": 2, "date": "2015-11-01",

"tkof": {"time": "09:28", "loc": "YBSS", "rwy": "2"},

"ldg": {"time": "09:33", "loc": "YBSS", "rwy": "9"},

"dalt": "400", "dt": "5"}

],

"sum_dt": "37",

"first_tkof": "09:28",

"last_ldg": "11:00,

"max_dalt": 540

This reply lists two flights at the queried airport YBSS ("query_type": "ap").
Glider ("type": 1) VH-NXY with FLARM ID "id": "flarm:DD1234" is taking
off at 09:28 local time on runway 02, being towed ("launch": "T") by VH-BAB
with FLARM ID "id": "flarm:DF1234".

VH-NXY reaches a maximum altitude (dalt) of 540m AGL and lands after 1
hour and 32 minutes (dt) at 11:00 local time.

The tow plane ("type": 2) takes off simultaneously and lands 5 minutes later
on runway 09 after reaching a maximum altitude of 400m AGL.

There was a total of "sum_dt" one hour and 37 minutes flown on that day.
The first takeoff was at 09:28 and the last landing at 11:00. The maximum altitude
reached was 540m AGL.

The launch method "launch" can be "T" for aerotow, "S" for a motor-glider
self launch, "W" for a winch launch or "" for a powered aircraft or when it couldn’t
be determined.

Fields like "time", "loc", "rwy" etc. may be empty if the respective values
could not be determined.

The "date" field refers to the date of takeoff.
The "seq" field contains a unique sequence number for each record. Use at

least 8 byte integers to process.
The "climb" field contains the average climb rate from takeoff to maximum

recorded altitude [m/s]. This is useful e.g. for evaluating climb performance of tow
planes.

The "init_climb" field contains the climb rate immediately after takeoff [m/s].
The "vs" field contains the current vertical speed [m/s] while in flight.

9 Troubleshooting

If your targets don’t appear on the tracking site, check the following:

• Are you sending the data to the correct IP address and socket?

• Are you using one source socket per tracking client?

• Is the syntax correct?

• Is the vehicle type OR’ed with 0x100 (allow tracking)?

14

https://ktrax.kisstech.ch/

KTrax JSON/REST and UDP interface KTrax

• Are the gpstime fields correct? They have to be UTC and in integer millisec-
onds since 1970. If you are simulating targets, is your computer synchronized
to UTC? Use e.g. NTP synchronization.

• Are millisecond values transmitted as integers, i.e. without a decimal point?

• Are the sequence numbers of ktrax pos packets strictly monotonic?

15

https://ktrax.kisstech.ch/

	Revisions
	Introduction
	Public KTrax server
	Usage conditions for the public KTrax server

	The KTrax native tracking protocol (UDP)
	Periodic packets
	The ktrax_pos packet (client to server)
	The ktrax_hello packet (client to server)
	The ktrax_info/ktrax_info2 packet (client to server)
	The ktrax_data packet (client to server)
	The ktrax_update packet (server to client)

	Special purpose packets (messages)
	Bye message
	URL message

	Examples
	Gliding

	Network type codes
	Mobile networks
	Special purpose networks

	Vehicle types
	Aviation

	KTrax JSON service: Tracking
	KTrax JSON service: Sortie logbook
	Troubleshooting

